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Abstract

We apply the twisted-order parameter (TOP) for dimerized quantum spin
ladders to locate the critical points that separate gapped phases representing
quantum spin liquids of various types. Using the density matrix renormalization
group (DMRG), method, we find that the TOP is a good order parameter for
these systems regardless of the number of legs. As a check, we reproduce with
the DMRG and periodic boundary conditions the computations previously done
with quantum Monte Carlo for one-dimensional S = 1/2, S = 1, S = 3/2 and
S = 2 Heisenberg chains with alternating bonds.

PACS numbers: 75.10.Jm, 75.10.−b, 74.20.Mn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The physics of quantum spin ladders with dimerization [1] is an emblematic example of
quantum phase transitions with a rich structure of both gapless and gapped phases [2–4, 35].
The main issue in their quantum phase diagrams is to determine the location of critical points or
lines, which typically separate massive phases. These phases exhibit quite strongly correlated
properties like Haldane phases [5], an example of quantum spin liquid of great interest in
condensed matter systems. Analytical methods have been applied to uncover this rich phase
structure, some of them non-perturbative [1, 6–9]. However, they are not sufficient to study
with enough precision the whole range of coupling parameters entering in their quantum
lattice Hamiltonians and, consequently, they have to be complemented with numerical studies
[10–13], which sometimes modify the conclusions achieved with analytical methods, either
quantitatively and/or qualitatively.

Quantum spin ladder systems are not mere theoretical constructs, but they have been
experimentally synthesized in several types of materials [14–16, 18, 19], some of them as
interesting as the superconducting cuprate compounds or other classes of materials which
allow not only for antiferromagnetic couplings but also for ferromagnetic ones as we shall
be considering in this work. Ladder systems are also valuable candidates to implement their
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physics in simulable optical lattices [20, 21], where the coupling constants of the models could
be externally manipulated more easily than with standard materials. Furthermore, quantum
spin chains and ladders have played a central role for ground test numerical simulations when
the density matrix renormalization group (DMRG) was introduced [22–26].

A diversity of variants of quantum spin liquids appear as gapped phases in these dimerized
spin ladders. These types of spin orders have been initially classified resorting to the string-
order parameter (SOP) [27, 28]. However, this initial SOP parameter was only valid for
systems with spin magnitude S = 1. Then, a generalization valid for both integer and half-
integer spin systems was introduced [29] and recently, we have been able to check their validity
in a large class of dimerized spin ladders [13] and we have found that the generalized SOP
serves as a good order parameter to distinguish the many quantum phases appearing in those
ladders when their number of legs and spin couplings are varied.

When moving from one gapped phase to another, this process generically implies crossing
a critical point or line. Although the SOP parameter can detect the change associated with this
phase crossing, however it does not perform so well when trying to locate the position of those
critical points. To this end, another order parameter called twisted-order parameter (TOP) has
been introduced for spin chains [30] and some ladders [31, 32]. The TOP being non-local, it
can be considered as a close relative of the SOP. In fact, both the SOP and the TOP are suitable
to identify the valence bond solid content of a quantum phase. However their own peculiarities
make each of them more suitable for certain tasks: the SOP gives more information about the
valence bond solid content of a given quantum state and, moreover, allows us to unequivocally
classify each particular type of valence bond solid. On the other hand, the TOP performs
better than the SOP in the task of accurately locating the critical points in a quantum phase
transition between valence bond solid phases. In the end, both parameters together provide a
very powerful machinery to study the physics of these particular spin liquid systems.

The idea behind the TOP comes from the twist operator introduced in the proof of
the Lieb–Schulz–Mattis theorem (LSM) [33, 34] in one-dimensional quantum spin systems.
Under certain circumstances, namely, for half-integer S-spin chains, the system is proved to
be gapless by creating a sort of twisted excited state along the chain, whose energy gap with
respect to the ground state vanishes in the thermodynamic limit as 1/N , where N is the length
of the chain. Although this twist operator cannot be conclusive for the case of integer S-spin
chains, thereby opening the door for the celebrated Haldane conjecture [5], it turns out that it
can be used to locate the critical points of dimerized chains of arbitrary spins, either integer
or half-integer. The way to see this connection is by means of the valence bond solid (VBS)
states used as trial wavefunctions to qualitatively represent those gapped quantum phases.

The existence of extensions of the LSM theorem for spin ladders [35] can also be used
as a hint to trying to extend the notion of the TOP parameter to more complicated lattices
beyond one-dimensional systems. For spin ladders with S = 1

2 spins, this generalized LSM
theorem only works for an odd number of legs. Interestingly enough, we have found that the
generalized TOP parameter works for locating the critical points, regardless of the number of
legs.

This paper is organized as follows: in section 2 we introduce a set of quantum lattice
Hamiltonians for spin ladders which present two different patterns of dimerization, either
staggered or columnar, as well as antiferromagnetic or ferromagnetic couplings between their
legs (chains); in section 3 we present our numerical results for the TOP parameter measured
in those dimerized spin ladders using DMRG calculations. With this information we can plot
the TOP versus the dimerization strength and detect critical points by the vanishing of the
TOP parameter. Upon varying the dimerization patterns and the ferro- or antiferro-types of
rung couplings, the number of zeros and shape of the TOP also changes in characteristic forms
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that serve us to distinguish among the set of quantum ladder Hamiltonians introduced in the
previous section. Section 4 is devoted to conclusions.

2. Models of dimerized spin ladders

In this paper, we study quantum spin ladders that can be viewed as a certain number of
bond-alternated Heisenberg chains stacked one on top of another and coupled between them
via a coupling constant J ′ corresponding to a Heisenberg-like spin interaction. The bond
alternation between neighbor spins on the same leg is such that every strong bond is followed
by a weaker one. Every leg can then begin either with a strong or weak coupling, and that
initial choice determines the dimerization pattern all the way through the ladder.

Then, to characterize completely our ladders we have to specify some parameters:
the number of legs nl , the ferromagnetic J ′ < 0 or antiferromagnetic J ′ > 0 nature of
the Heisenberg coupling between legs and the dimerization pattern of every leg, given by the
coupling constant γ .

The Hamiltonian that gives raise to this general set of families of dimerized Heisenberg
ladders is

H OBC =
∑

�

∑
i

Ji,�Si (�) · Si+1(�) + J ′ ∑
�,i

Si (�) · Si (� + 1), (1)

where Si (�) denotes a S = 1/2 spin operator at the site i in the leg �, with i = 1, . . . , N

and � = 1, . . . , nl . The set of couplings denoted by Ji,� endows the ladders with certain
dimerization patterns to be specified below.

We shall focus our attention on two- and three-leg ladders, in addition to spin chains.
These cases will suffice to clarify the behavior of the TOP parameter under diverse dimerization
patterns. Moreover, among the different possibilities of establishing a dimerization pattern on
every leg, we will only be interested in two particular arrangements of bonds. We will denote
the staggering dimerization pattern that with a Ji,� distribution of the form Ji,� = 1 + (−1)i+�γ

while the columnar pattern has a distribution Ji,� = 1 − (−1)iγ , i.e., all the legs begin with a
strong bond. In both cases the parameter γ is constrained to be within −1 � γ � 1.

We will also be interested in using not only open boundary conditions but also periodic
ones. In this case, we have to modify the Hamiltonian (1) to take into account the interactions
between both ends:

H PBC = H OBC +
∑

�

JN,�SN(�) · S1(�). (2)

Equation (1) is not translationally invariant. In contrast, if we consider ladders with an
even number (greater than two) of sites per leg and using periodic boundary conditions, the
Hamiltonian (2) is invariant under translations of the form Si (�) → Si+2(�) and also under
reversal of the dimerization strength γ ↔ −γ .

The number of possible combinations of those ingredients described above is still high,
and not all of them may have critical properties. This fact will depend essentially on the
staggering pattern and coupling constant J ′. In particular, for ladders with two and three
legs, the models that may have critical phases for certain configurations of the microscopic
parameters are the following ones: (i) the staggered antiferromagnetic two-leg ladder,
(ii) the columnar ferromagnetic two-leg ladder, (iii) the staggered antiferromagnetic three-
leg ladder and (iv) the columnar ferromagnetic three-leg ladder. These models are depicted in
figure 1.

3



J. Phys. A: Math. Theor. 41 (2008) 485301 J Almeida et al

(a)

(b)

(c)

(d )

Figure 1. Different dimerization patterns in two- and three-leg spin ladders: (a) and (c) are
staggered, (b) and (d) are columnar. Thicker lines correspond to a coupling constant Ji,� = 1 + γ

and thinner ones to Ji,� = 1 − γ .

3. Results

The natural extension of the TOP as defined in [30] to systems with many legs is as follows:

z1
� := 〈ψ0|exp

⎧⎨
⎩

2π i

N

N∑
j=1

jSz
j

⎫⎬
⎭ |ψ0〉, (3)

where each operator now includes the contribution coming from each leg of the ladder
Si = ∑

� Si(�).
It is worth recalling that, despite the TOP is in general a complex number, it has been

proved [30] that, both using open and periodic boundary conditions, the imaginary part of this
parameter decays to zero as the total size N increases.

Much like the string-order parameter (SOP), the TOP is a non-local parameter since it
involves non-local measurements. However, unlike the SOP, the success of the TOP relies on
the 2π twist carried out between both ends of the system. This fact makes it unclear how will
the DMRG perform when measuring it. This is in sharp contrast with the SOP case, which can
be accurately measured using only a representative subsystem within the bulk of the whole
system.

3.1. Spin chains

Due to this uncertainty and as a first check, we have reproduced the quantum Monte Carlo
results for one-dimensional dimerized chains [30] using DMRG-adapted methods. Figure 2
shows the TOP computed for these chains using periodic boundary conditions. To compute
these values the number of DMRG sweeps was set to three, the number of retained states of
the density matrix was m = 200 and the Lanczos tolerance equal to 10−10. The discarded
weight of the eigenstates of the density matrix will range throughout the computations in this
paper from 10−6 in the worst cases to values around 10−9 in the vast majority of the runs.
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Figure 2. DMRG computation of the TOP for different one-dimensional Heisenberg chains with
alternated bonds. The size of the chains is L = 64 and periodic boundary conditions have been
used.

With these parameters, the results obtained using the DMRG and quantum Monte Carlo agree
almost identically. In order to go a bit further and obtain better estimates of these critical
points, using DMRG it is more convenient to use open chains. Figure 3 represents the TOP
computed using open boundary conditions and different sizes of the chains. The largest size
L = 150 was computed performing four DMRG sweeps, m = 300 and the tolerance equal
to 10−9, the less demanding case L = 80 required two sweeps, m = 120 and the tolerance
equal to 10−8. The critical points of each chain are those where the TOP is zero. Looking
at the different graphs two observations are in order: on one hand we see that the location of
the critical points is overestimated in the case of periodic boundary conditions compared to
the case of open chains. On the other hand, the values of the critical points computed with
open boundary conditions are in good agreement with the values of these points computed
in the thermodynamic limit in other works [30]. In fact, from figure 3 and the curves with
L = 150 we see that for the S = 1 chain we obtain γc = 0.254, for S = 3/2, γc = 0.426.
The case with S = 2 has two critical points at γc = 0.184 and γc = 0.522. These values can
be respectively compared with the previously computed γc = 0.259 97(3), γc = 0.431 31(7),
γc = 0.1866(7), 0.5500(1).

Regarding the critical point γc = 0 in the cases with S = 1/2 and S = 3/2, we observe
that the TOP unambiguously goes to zero using periodic boundary conditions. With open
boundary conditions, however, the TOP is still far from zero even with L = 150, moreover its
value does not decrease noticeably from L = 80 to L = 150. In view of these results we do not
expect that the TOP will decay to zero with increasing sizes, since L = 150 is by far a large size
to capture the bulk physics of these systems. Note that this fact, although surprising, is not in
contradiction with the established knowledge, namely the Lieb–Schultz–Mattis theorem is not
applicable here because open boundary conditions break translation invariance. On the other
hand, the ability of the twisted-order parameter to detect phase transitions between valence
bond solids relies on the fact that it changes the sign according to the exact nature of the VBS
in question, but nothing has been stated about its continuity at a critical point. Therefore this
observed behavior seems to be an unexpected difference between open and periodic boundary
conditions.
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Figure 3. TOP computed in various Heisenberg chains with alternated bonds and different spin
values: (a) S = 1/2, (b) S = 1, (c) S = 3/2, (d) S = 2. Computations using open boundary
conditions properly capture the location of the critical points as we increase the size of the system,
however the convergence of the TOP toward zero at the particular point γc = 0 in the graphs
(a) and (c) is very slow and makes a difference between both types of boundary conditions.

3.2. Spin ladders

In the rest of this section we will measure the TOP in the models described previously in
section 2 in order to test whether or not it can also be successfully applied to non-strictly
one-dimensional cases.
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Figure 4. TOP computed in ladders with columnar and staggering dimerization. The constant J ′
has a fixed value equal to J ′ = −5 in the two- and three-leg ladder with columnar dimerization
and J ′ = 1 in the two and three leg with staggered dimerization. Periodic boundary conditions
have been used. The size of the two-leg ladders is L = 2 × 60, and L = 3 × 60 for the three-leg
ladders.

Table 1. Location of some critical points of different dimerized ladders. The identification of
each ladder is done by means of the number of legs: two or three, and the dimerization pattern:
staggered or columnar. We provide the values obtained with the TOP and the corresponding ones
computed directly looking at the vanishing of the gap. References where these last values have
been obtained from are given in the text.

Ladder J ′ TOP Other

3, Stagg. 1.0 γc = 0.001,−0.542, 0.536 γc = 0, ±0.527
3, Col. −5.0 γc = 0.005,−0.372, 0.368 γc = 0,±0.335
2, Stagg. 1.0 γc = −0.38, 0.38 γc = ±0.34
2, Col. −5.0 γc = −0.212, 0.211 γc = ±0.196

We saw in the previous section that some differences related to the continuity of the TOP
may appear between open boundary conditions and periodic boundary conditions. Moreover,
as was discussed in section 2, our models are invariant with periodic boundary conditions
under sign reversal of the dimerization strength. This means that for a given computed critical
point, say γc, there must exist another one equal to −γc. The difference in the value of these
opposite points will then give us a hint about the truncation error of our DMRG computations.
For these reasons we will use periodic boundary conditions in this section.

In figure 4 we have computed the TOP on each one of the critical ladders described in
the previous section. To run the DMRG we have set m = 340, the tolerance equal to 10−9

and performed three sweeps. For each one of the ladders we have used an arbitrary value of
the constant J ′. The critical lines of these models have been obtained by other techniques
in [10, 12, 13]. Since we are using periodic boundary conditions we are constrained to use
smaller sizes than those considered in the references and hence no exact agreement is expected.
With this consideration in mind, the location of the critical points in figure 4, that is, the points
where the TOP is zero, is in good agreement with those of the references, as comes out from
table 1.
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Remember that a valence bond solid in a system of spin S can be denoted generally as
(m, n)-VBS where m+n = 2S. The sign of the TOP is related to the nature of the VBS phase.
From its definition it can be seen that its sign is given by a factor (−1)k , where k is the number
of isolated spins at the end of the chain. More explicitly, k = m if the number of sites is odd
and k = n if it is even.

The TOP itself may result insufficient to characterize a general (m, n)-VBS state. We see
however in figure 4 that the sign of the TOP is coherent with the phase diagram of these models
obtained in other works by means of the SOP. That is, in the cases of the two- and three-leg
ladders with columnar dimerization the TOP is negative from γ = 0 up to the corresponding
critical values γc where the TOP is zero, and then the TOP is positive all the way to
γ = 1. On the other hand, the behavior of the TOP with the two- and three-leg ladders
with staggered dimerization is the contrary. Since our computations have been all done
using an even number of sites per leg, the sign of the TOP agrees with the characterization
of the phases of each model done by means of the generalized SOP in [12, 13]. That
is, moving from γ = 0 to γ = 1 the two-leg ladder with columnar dimerization moves
from a (1, 1)-VBS to a (2, 0)-VBS while the three-leg ladder with columnar dimerization
moves from a (2, 1)-VBS to a (3, 0)-VBS. In these cases k = 1 and the sign of the TOP is
negative in the first phases, and k = 0 and the sign of the TOP is positive in the second
phases. In the case of the three-leg ladder with staggered dimerization we move from
a (1, 2)-VBS to a (2, 1)-VBS and again the sign of the TOP is correct according to the
value of k. We have no information on the VBS phases found in the two-leg ladder with
staggered dimerization. In this particular case the information derived from the TOP does
not allow us to uniquely determine each phase. That is, there is only one possible state
that corresponds with a negative value of the TOP, namely a (1, 1)-VBS. In the case of
a positive value of the TOP we have however two possible states: a (2, 0)-VBS or a
(0, 2)-VBS.

4. Conclusions

The results shown in the previous section reveal that the DMRG algorithm is well suited
to compute the twisted-order parameter even with open boundary conditions. We have
applied TOP parameter to four different spin ladder systems and estimated the location of
their critical points. We find agreement with other DMRG calculations which compute
the vanishing of the gap directly. We have checked that the TOP computation is
not only restricted to strictly one-dimensional systems but it also works in two- and
three-leg ladders. This holds true despite that the LSM theorem based on the twist
operator only works for ladders with an odd number of legs and S = 1

2 spins. In
this sense, the twisted-order parameter serves as a suitable and complementary tool to
the string-order parameter in the characterization of quantum phases in dimerized spin
systems.
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